12/12/2019, 05:12:41 am *
Bienvenido(a), Visitante. Por favor, ingresa o regístrate.

Ingresar con nombre de usuario, contraseña y duración de la sesión
Noticias: Renovado el procedimiento de inserción de archivos GEOGEBRA en los mensajes.
 
 
Páginas: [1]   Ir Abajo
  Imprimir  
Autor Tema: Buscar el valor de x en un triángulo, ¿por existencia?  (Leído 1509 veces)
0 Usuarios y 1 Visitante están viendo este tema.
elvismujica
Semi pleno
***

Karma: +0/-0
Desconectado Desconectado

Sexo: Masculino
Perú Perú

Mensajes: 86


Ver Perfil
« : 02/12/2018, 05:13:31 am »

Saludos, realmente no veo como determinar el valor de x en este triángulo, cuando lo trato de buscar por la existencia del triángulo, entonce -6<x<6, o sea, corresponde no a un valor sino a valores que van del 1 al 5, en todo caso la pregunta sería los valores de x

* Seleccion_128.png (12.38 KB - descargado 34 veces.)
En línea
manooooh
Pleno*
*****

Karma: +1/-0
Desconectado Desconectado

Sexo: Masculino
Argentina Argentina

Mensajes: 2.445


Ver Perfil
« Respuesta #1 : 02/12/2018, 05:58:41 am »

Hola

Realmente no veo cómo determinar el valor de x en este triángulo, cuando lo trato de buscar por la existencia del triángulo, entonces -6<x<6, o sea, corresponde no a un valor sino a valores que van del 1 al 5, en todo caso la pregunta sería los valores de x
Spoiler: Imagen (click para mostrar u ocultar)

Bien por vos que hayas llegado a un intervalo de solución, porque yo no he podido ni siquiera utilizar la ley de los senos ni la de los cosenos :triste:.

Saludos

P.D. Las imágenes que representen ilustraciones deben subirse directamente al foro y no a servidores externos (los enlaces pueden caerse con rapidez).
En línea
elvismujica
Semi pleno
***

Karma: +0/-0
Desconectado Desconectado

Sexo: Masculino
Perú Perú

Mensajes: 86


Ver Perfil
« Respuesta #2 : 02/12/2018, 06:13:25 am »

Gracias por tu comentario,.... Si, de acuerdo con tu comentario de la imagen, intenté de subirla varias veces directo al foro, pero no tuve éxito en el intento, así que por la necesidad tuve que usar servidor externo, espero que se prolongue.
En línea
elvismujica
Semi pleno
***

Karma: +0/-0
Desconectado Desconectado

Sexo: Masculino
Perú Perú

Mensajes: 86


Ver Perfil
« Respuesta #3 : 02/12/2018, 06:15:59 am »

Acá no funciona la leyes de los senos, ni cosenos, estoy sospechando seriamente que la pregunta está mal planteada y mas bien sería calcular el mínimo valor entero que puede tomar x
En línea
manooooh
Pleno*
*****

Karma: +1/-0
Desconectado Desconectado

Sexo: Masculino
Argentina Argentina

Mensajes: 2.445


Ver Perfil
« Respuesta #4 : 02/12/2018, 06:17:51 am »

Hola

Gracias por tu comentario,.... Si, de acuerdo con tu comentario de la imagen, intenté de subirla varias veces directo al foro, pero no tuve éxito en el intento, así que por la necesidad tuve que usar servidor externo, espero que se prolongue.

Ah, pero ya la subiste al foro. No lo había visto, perdoname. Para hacerla visible sólo tenés que hacer clic derecho en el nombre de la imagen en azul (debajo del mensaje) -> Copiar dirección de enlace -> pegarlo dentro de las etiquetas [img][/img].

En cuanto al problema, ¿te molestaría subir tu resolución? Estoy intrigado en saber cómo llegaste hasta ahí (¡soy malo!).

Saludos
En línea
manooooh
Pleno*
*****

Karma: +1/-0
Desconectado Desconectado

Sexo: Masculino
Argentina Argentina

Mensajes: 2.445


Ver Perfil
« Respuesta #5 : 02/12/2018, 06:21:18 am »

Hola

Acá no funciona la leyes de los senos, ni cosenos, estoy sospechando seriamente que la pregunta está mal planteada y mas bien sería calcular el mínimo valor entero que puede tomar x

Es factible, sí.

¿Del intervalo que proponés ninguno verifica un posible triángulo? Porque si es así el problema está resuelto: encontraste UN valor (entero) de [texx]x[/texx].

Si pedís por una resolución esperá a alguien más.

Saludos
En línea
elvismujica
Semi pleno
***

Karma: +0/-0
Desconectado Desconectado

Sexo: Masculino
Perú Perú

Mensajes: 86


Ver Perfil
« Respuesta #6 : 02/12/2018, 06:29:52 am »

Mi resolución plantea lo siguiente:

Por existencia triángular puedo comprobar que el triángulo existe si se cumple que por sus lados a-c<b<a+c, entonce, dirigiendome al problema sería, 5x-x<24m<5x+x => 4x<24m<6x.... x<6m<3/2x.
Esto significa que  ahora se me está poniendo mas dificil  :BangHead:

Podría decir qué ¿el valor de x es 5?, cumple
En línea
Carlos Ivorra
Administrador
Pleno*
*****

Karma: +0/-0
Desconectado Desconectado

Sexo: Masculino
España España

Mensajes: 9.067


Ver Perfil WWW
« Respuesta #7 : 02/12/2018, 06:38:20 am »

Mi resolución plantea lo siguiente:

Por existencia triángular puedo comprobar que el triángulo existe si se cumple que por sus lados a-c<b<a+c, entonce, dirigiendome al problema sería, 5x-x<24m<5x+x => 4x<24m<6x.... x<6m<3/2x.
Esto significa que  ahora se me está poniendo mas dificil  :BangHead:

Podría decir qué ¿el valor de x es 5?, cumple

Si admitimos que de la figura se deduce también que el lado que mide 24 es el mayor, la única solución posible es [texx]x= 4[/texx], porque tus cálculos muestran que [texx]4x\leq 24\leq 6x[/texx], luego [texx]4\leq x \leq 6[/texx], lo que sólo deja tres posibilidades: [texx](4, 20, 24), (5, 25, 24), (6, 30, 24)[/texx], de las cuales la primera es la única en la que [texx]24[/texx] es el lado mayor.

EDITO: Ah, no, no vale, porque entonces [texx]24=20+4[/texx] y no hay triángulo. Las desigualdades tienen que ser estrictas. Lo mismo pasa con la tercera, luego la única solución es [texx]x=5[/texx], y la figura miente un poco.

EDITO MÁS: En realidad la figura no miente. Soy yo el que dice tonterías. La figura no contradice que el lado 5x pueda ser mayor.
En línea
elvismujica
Semi pleno
***

Karma: +0/-0
Desconectado Desconectado

Sexo: Masculino
Perú Perú

Mensajes: 86


Ver Perfil
« Respuesta #8 : 02/12/2018, 07:00:59 am »

En conclusión, al decir que:[texx]4x<24m<6x\Rightarrow{4<x<6}[/texx] esto es que no queda otra opción que tomar [texx]x=5[/texx], y así es, no creo que el triángulo mienta, es correcto y preciso,
En línea
Carlos Ivorra
Administrador
Pleno*
*****

Karma: +0/-0
Desconectado Desconectado

Sexo: Masculino
España España

Mensajes: 9.067


Ver Perfil WWW
« Respuesta #9 : 02/12/2018, 07:03:57 am »

En conclusión, al decir que:[texx]4x<24m<6x\Rightarrow{4<x<6}[/texx] esto es que no queda otra opción que tomar [texx]x=5[/texx], y así es, no creo que el triángulo mienta, es correcto y preciso,

En efecto, me había liado yo conmigo mismo al suponer, no sé por qué, que el lado 24 tenía que ser el mayor.
En línea
feriva
Pleno*
*****

Karma: +1/-0
Desconectado Desconectado

Sexo: Masculino
España España

Mensajes: 8.626



Ver Perfil
« Respuesta #10 : 02/12/2018, 08:11:12 am »

Saludos, realmente no veo como determinar el valor de x en este triángulo, cuando lo trato de buscar por la existencia del triángulo, entonce -6<x<6, o sea, corresponde no a un valor sino a valores que van del 1 al 5, en todo caso la pregunta sería los valores de x


Hola. Usando la igualdad de las ternas pitagóricas (¿conoces?) y haciendo varias sustituciones (teniendo en cuenta los dos triángulos rectángulos que se forman y tal) he conseguido un sistema determinado, soluble. Se lo he dado al Wolfram y no salen soluciones enteras; aunque como han sido bastantes "despejes" y cosas, lo más probable es que me haya equivocado. A lo mejor por la tarde me pongo otra vez.

Ahí hay dos ecuaciones; una para cada triángulo rectángulo.

En el de la izquierda

[texx]x^{2}=k^{2}+h^{2}
 [/texx]

En el de la derecha

[texx]25x^{2}=(24-k)^{2}+h^{2}
 [/texx]

Y sustituyendo le doy esto al Wolfram

[texx]25(k^{2}+h^{2})=(24-k)^{2}+h^{2}
 [/texx]

Las únicas soluciones para x son éstas:

[texx]x=\pm\sqrt{26}
 [/texx]


*Salvo que se haga h=0; en cuyo caso tienes "x" igual a más menos 4,6.

Saludos.
En línea

martiniano
Pleno*
*****

Karma: +2/-0
Desconectado Desconectado

Sexo: Masculino
España España

Mensajes: 950


Ver Perfil
« Respuesta #11 : 02/12/2018, 03:17:16 pm »

Hola feriva.

Y sustituyendo le doy esto al Wolfram

[texx]25(k^{2}+h^{2})=(24-k)^{2}+h^{2}
 [/texx]

No lo entiendo. Ésta es una ecuación con dos incógnitas. Discúlpame porque no manejo el programa, pero supongo que le habrás dicho que busque las soluciones enteras, o algo así. Pero lo que tiene que ser entero es [texx]x[/texx].

Es más práctico que te fijes en lo de la existencia del triángulo como ya han dicho, o desigualdad triangular. Se tiene que cumplir sobre los tres lados, lo que sólo es interesante aplicarla sobre el lado de [texx]24[/texx] y sobre el de [texx]5x[/texx]. Las condiciones son:

[texx]x+5x>24[/texx]   y   [texx]x+24>5x[/texx]

¿Entiendes? Si una de ellas no de cumple es imposible construir el triángulo. Si no entiendes esto coméntalo  :guiño:

Las inecuaciones se simplifican en [texx]x>4[/texx] y [texx]x<6[/texx]. De ahí la solución [texx]x=5[/texx].

Saludos.
En línea
feriva
Pleno*
*****

Karma: +1/-0
Desconectado Desconectado

Sexo: Masculino
España España

Mensajes: 8.626



Ver Perfil
« Respuesta #12 : 02/12/2018, 03:34:13 pm »

Hola feriva.

Y sustituyendo le doy esto al Wolfram

[texx]25(k^{2}+h^{2})=(24-k)^{2}+h^{2}
 [/texx]

No lo entiendo.

Es que no le he dado sólo una, perdón que no lo había dicho, le he dado la de "x" también; si no, no sabe la dependencia entre las variables porque en ésa no aparece; mira el enlace, aquí te viene todo, las reales, las que son enteras entre las reales...

https://www.wolframalpha.com/input/?i=25(k%5E2%2Bh%5E2)%3D(24-k)%5E2%2Bh%5E2,++x%5E2%3Dk%5E2%2Bh%5E2

Saludos.
En línea

hméndez
Pleno*
*****

Karma: +1/-0
Desconectado Desconectado

Sexo: Masculino
Venezuela Venezuela

Mensajes: 362


Ver Perfil
« Respuesta #13 : 02/12/2018, 04:21:37 pm »

Escalando convenientemente:  :guiño:



[texx]5-1<\displaystyle\frac{24}{x}<5+1[/texx]

[texx]4<\displaystyle\frac{24}{x}<6[/texx]

[texx]\displaystyle\frac{1}{6}<\displaystyle\frac{1}{x}<\displaystyle\frac{1}{4}[/texx]

[texx]6>x>4[/texx]

[texx]4<x<6[/texx]

[texx]x=5[/texx]

Saludos

* TrianEsc.png (12.23 KB - descargado 115 veces.)
En línea
feriva
Pleno*
*****

Karma: +1/-0
Desconectado Desconectado

Sexo: Masculino
España España

Mensajes: 8.626



Ver Perfil
« Respuesta #14 : 03/12/2018, 09:51:07 am »

Escalando convenientemente:  :guiño:

Spoiler (click para mostrar u ocultar)


Ahí sí se cumple; pero veo una cosa:

Hacemos x=5; entonces:

[texx]{\color{blue}1=k^{2}+h^{2}}
 [/texx]

En la de la derecha

[texx]25=(\dfrac{24}{5}-k)^{2}+h^{2}
 [/texx]

[texx]25=\dfrac{24^{2}}{25}+{\color{blue}k^{2}+h^{2}}-\dfrac{48}{5}k
 [/texx]

[texx]25=\dfrac{24^{2}}{25}+{\color{blue}1}-\dfrac{48}{5}k
 [/texx]

[texx]24=\dfrac{24^{2}}{25}-\dfrac{48}{5}k
 [/texx]

[texx]1=\dfrac{24}{25}-\dfrac{2}{5}k
 [/texx]

Existe

[texx]\dfrac{24}{10}-\dfrac{5}{2}=k=-\dfrac{1}{10}
 [/texx]

y existe

[texx]h=\dfrac{3(11)^{\frac{1}{2}}}{10}
 [/texx].

No obstante, si hiciéramos x=6, por ejemplo, no dejarían de existir valores reales para “k” y “h”. Entiendo que la desigualdad triangular no entra en juego decisivamente.

Cita de:  elvismujica

estoy sospechando seriamente que la pregunta está mal planteada y mas bien sería calcular el mínimo valor entero que puede tomar x


Pues si sospechabas... era fácil, no tenías por qué haberte quedado en la sospecha; dando el valor x= 5 tienes es un sistema de ecuaciones soluble para ver si funciona o no.

Saludos.
En línea

martiniano
Pleno*
*****

Karma: +2/-0
Desconectado Desconectado

Sexo: Masculino
España España

Mensajes: 950


Ver Perfil
« Respuesta #15 : 03/12/2018, 07:46:14 pm »

Hola.

Hacemos x=5; entonces:

[texx]{\color{blue}1=k^{2}+h^{2}}
 [/texx]

Querías decir [texx]{\color{blue}25=k^{2}+h^{2}}  [/texx] , ¿verdad?

No obstante, si hiciéramos x=6, por ejemplo, no dejarían de existir valores reales para “k” y “h”. Entiendo que la desigualdad triangular no entra en juego decisivamente.

Diría que si substituyes [texx]x=6\;\Rightarrow{\;}k^2+h^2=36[/texx] aquí:

[texx]25(k^{2}+h^{2})=(24-k)^{2}+h^{2}
 [/texx]

Te saldrá [texx]k=-6\,\Rightarrow{\,}h=\sqrt[ ]{x^2-k^2}=0[/texx], que no tiene demasiado sentido en el contexto del problema. Y si substituyes por un valor mayor, [texx]h[/texx] te quedará fuera de los reales.

Saludos.

En línea
Páginas: [1]   Ir Arriba
  Imprimir  
 
Ir a:  

Impulsado por MySQL Impulsado por PHP Powered by SMF 1.1.4 | SMF © 2006, Simple Machines LLC XHTML 1.0 válido! CSS válido!