Matemática => Triángulos => Mensaje iniciado por: 0_kool en 25/06/2017, 12:14:05 am



Título: Sin trigonometría I
Publicado por: 0_kool en 25/06/2017, 12:14:05 am
Hola , le he dado vueltas a dos problemas parecidos , éste es uno de ellos

Se trata de calcular [texx]\alpha [/texx], con los datos de la figura.

(http://rinconmatematico.com/foros/index.php?action=dlattach;topic=96439.0;attach=18613)


Título: Re: Sin trigonometría I
Publicado por: sugata en 25/06/2017, 12:31:47 am
En el triángulo de la izquierda nos falta un ángulo que es [texx]180-9\alpha[/texx], con lo que el ángulo anexo del triángulo de la derecha es [texx]180-180+9\alpha=9\alpha[/texx].
El único ángulo que nos faltaría es el de arriba a la derecha, que es 180 menos los de abajo.
Ya tendríamos los tres ángulos de ABC que sumados dan 180


Título: Re: Sin trigonometría I
Publicado por: Ignacio Larrosa en 25/06/2017, 09:04:18 am
En el triángulo de la izquierda nos falta un ángulo que es [texx]180-9\alpha[/texx], con lo que el ángulo anexo del triángulo de la derecha es [texx]180-180+9\alpha=9\alpha[/texx].
El único ángulo que nos faltaría es el de arriba a la derecha, que es 180 menos los de abajo.
Ya tendríamos los tres ángulos de ABC que sumados dan 180
Pero así no hacemos nada. El de arriba a la derecha sería de [texx]180^\circ{}-9\alpha - 2\alpha = 180^\circ{}-11\alpha[/texx]. Entonces la suma de los tres ángulos del triángulo ABC es

[texx]7\alpha + 2\alpha + 180^\circ{}-11\alpha + 2\alpha = 180^\circ{}[/texx]

Y nos quedamos sin saber nada de [texx]\alpha[/texx]. Una cosa que se puede utilizar es que [texx]\triangle ABC\approx{}\triangle ACM[/texx], pero ahora no tengo tiempo de verlo con detalle.

Saludos,




Título: Re: Sin trigonometría I
Publicado por: Ignacio Larrosa en 26/06/2017, 08:59:02 pm
En el triángulo de la izquierda nos falta un ángulo que es [texx]180-9\alpha[/texx], con lo que el ángulo anexo del triángulo de la derecha es [texx]180-180+9\alpha=9\alpha[/texx].
El único ángulo que nos faltaría es el de arriba a la derecha, que es 180 menos los de abajo.
Ya tendríamos los tres ángulos de ABC que sumados dan 180

Por más vueltas que le doy no consigo rematar con este problema. Estos problemas siempre se me hacen bastante difíciles, pues ante la casi certeza de la respuesta, que visiblemente es [texx]\alpha = 15^\circ{}[/texx], es muy complicado no suponer implícitamente algo equivalente a lo que quieres demostrar. Van al menos una docena de veces que pensé que lo tenía, para descubrir que no ...

Enlazo un archivo de GeoGebra con mis avances, bastante inútiles de momento ... Todos los datos que figuran son datos del problema o se deducen fácilmente. Los ángulos rectos comprobados, además de los del rectángulo AMDM', están marcados como tales. En particular los ángulos en F no está probado que sean rectos (si lo fueran, ya estaría todo hecho ...)

Otro dato que no figura es que [texx]\displaystyle\frac{AC}{AM}=\displaystyle\frac{CB}{CM} = \sqrt[ ]{2},\textrm{ porque }\triangle MAC \approx{} \triangle CAB[/texx]


Saludos,


Título: Re: Sin trigonometría I
Publicado por: sugata en 27/06/2017, 01:33:17 am
 :-X
En el triángulo de la izquierda nos falta un ángulo que es [texx]180-9\alpha[/texx], con lo que el ángulo anexo del triángulo de la derecha es [texx]180-180+9\alpha=9\alpha[/texx].
El único ángulo que nos faltaría es el de arriba a la derecha, que es 180 menos los de abajo.
Ya tendríamos los tres ángulos de ABC que sumados dan 180
Pero así no hacemos nada. El de arriba a la derecha sería de [texx]180^\circ{}-9\alpha - 2\alpha = 180^\circ{}-11\alpha[/texx]. Entonces la suma de los tres ángulos del triángulo ABC es

[texx]7\alpha + 2\alpha + 180^\circ{}-11\alpha + 2\alpha = 180^\circ{}[/texx]

Y nos quedamos sin saber nada de [texx]\alpha[/texx]. Una cosa que se puede utilizar es que [texx]\triangle ABC\approx{}\triangle ACM[/texx], pero ahora no tengo tiempo de verlo con detalle.

Saludos,




Tienes razón.
No me planteé la ecuación y no me di cuenta.